Malus' Law

Purpose: To measure the variation of the transmission of radio waves through 2 polarizers as the orientation angle between them is changed. This is a quantitative continuation of the "Polarized or Unpolarized" activity and should be done in this order.

http://en.wikipedia.org/wiki/Malus\'s_law\#Malus.27_law_and_other_properties

Student Info:

1) Designed for Physics (Grades $11 / 12$)
2) Prior Knowledge: "Polarized or Unpolarized" Activity, Graphing of Trig. Functions
3) Suggested Website:
http://scholar.hw.ac.uk/site/physics/topic6.html

Teacher Info:

1) Prior Knowledge: Polarization Activity and Graphing of Cosine Function
2) Vocabulary: Malus’ Law, intensity, electric field and crossed polarizers
3) Suggested Website:
http://en.wikipedia.org/wiki/Malus's_law

Time Required:

1) Setup $\approx 20 \mathrm{~min}$
2) Activity / Lab $\approx 20 \mathrm{~min}$
3) Data Analysis $\approx 30 \mathrm{~min}$
4) Discussion / Wrap Up $\approx 20 \mathrm{~min}$

Materials Needed:

1) VSRT System (See Appendix I)
2) Single CFL set 2 feet from detectors next to each other (~ 2.5 inches center to center)
3) Polarizers ($\sim 2 \mathrm{~mm}$ wide / $\sim 2 \mathrm{~mm}$ spacing) made from metallic tape (Cu or Al) and Polarizer Holder marked at 10° Increments (or mounted to a protractor)

Procedure:

1) Start VSRT System and verify operation without polarizers.
2) Place both polarizers in the same orientation and verify signal level above 100 K . * Note: If the CFL/LNBF distance is changed, the signal level can be adjusted near 100 K , so the output is roughly the $\%$ transmission.
3) Rotate one polarizer relative to the other (in front of separate detectors) in 10° increments and record the Power in column \#2 in the table below.

4) Repeat until the polarizers are oriented at 90° (crossed) to each other.

Data Table:

$\begin{gathered} \text { Angle } \\ {\left[{ }^{\circ}\right]} \\ \hline \end{gathered}$	$\begin{gathered} \text { * Power } \\ \text { [K] } \\ \hline \end{gathered}$	\% Transmission	Theoretical Transmission [\%])	\% Difference
0				
10				
20				
30				
40				
50				
60				
70				
80				
90				
			Average \% Diff. =	

[^0]
Calculations:

1) Calculate the \% Transmission by dividing the Power at a certain angle by the Power at 0°. \{ Note: The results should be less than 100% \}
2) Compute the theoretical transmission by taking the cosine of the angle, then squaring it and multiplying by 100 for a percentage;

$$
\text { i.e. }-\operatorname{Trans}(\text { theo })=\cos ^{2} \theta * 100 \%
$$

3) Calculate the \% Difference $=(\%$ Transmission - Theoretical Transmission $)$ Theoretical Transmission
4) Average the \% Difference and place result in the shaded box on lower right.

Graphing:

1) Setup the graph for the \% Transmission (0% to 100%) vs. Angle (0° to 90°) adjusting the scale of the axes to maximize the size of the graph.
2) Graph the measured transmission ($2^{\text {nd }}$ column) vs. angle and label it.
3) Graph the theoretical transmission ($3^{\text {rd }}$ column) vs. angle and label it.

Questions:

1) Is the graph of \% Transmission vs. Angle linear? Why or Why Not?
2) For which angles is there good agreement ($<5 \%$ difference) between the measured transmission and the theoretical transmissions?
3) Where is the \% Transmission most sensitive to small changes in angle (few ${ }^{\circ}$)?
4) Where is the \% Transmission least sensitive to small changes in angle (few ${ }^{\circ}$)?
5) Explain the answers for questions \#3 \& \#4 based on the shape of the curves.

Additional Activities:

1) Vary the polarizer slit widths and spacings to check these effects.

Note: The slit/spacing width needs to be $\sim 1 / 10^{\text {th }}$ the wavelength ($\sim 2.5 \mathrm{~mm}$).
2) Try both polarizers in front of either LNBF. Does this also work? Why?

Sample Results:

Malus' Law using 12 GHz radio waves

[^0]: * - See Basic VSRT Operation for discussion of Power [K]

