Malus' Law

To measure the variation of the transmission of radio waves through 2 **Purpose:** polarizers as the orientation angle between them is changed. This is a quantitative continuation of the "Polarized or Unpolarized" activity and should be done in this order.

http://en.wikipedia.org/wiki/Malus%27s law#Malus.27 law and other properties

Student Info:

- 1) Designed for Physics (Grades 11/12)
- 2) Prior Knowledge: "Polarized or Unpolarized" Activity, Graphing of Trig. Functions
- 3) Suggested Website: http://scholar.hw.ac.uk/site/physics/topic6.html

Teacher Info:

- 1) Prior Knowledge: Polarization Activity and Graphing of Cosine Function
- 2) Vocabulary: Malus' Law, intensity, electric field and crossed polarizers
- 3) Suggested Website: http://en.wikipedia.org/wiki/Malus's law

Time Required:

- 1) Setup $\approx 20 \text{ min}$
- 2) Activity / Lab ≈ 20 min
- 3) Data Analysis $\approx 30 \text{ min}$
- 4) Discussion / Wrap Up ≈ 20 min

Materials Needed:

- 1) VSRT System (See Appendix I)
- 2) Single CFL set 2 feet from detectors next to each other (~2.5 inches center to center)
- 3) Polarizers (~2mm wide / ~2mm spacing) made from metallic tape (Cu or Al) and Polarizer Holder marked at 10° Increments (or mounted to a protractor)

Procedure:

- 1) Start VSRT System and verify operation without polarizers.
- 2) Place both polarizers in the same orientation and verify signal level above 100K.
 * Note: If the CFL/LNBF distance is changed, the signal level can be adjusted near 100K, so the output is roughly the % transmission.
- 3) Rotate one polarizer relative to the other (in front of separate detectors) in 10° increments and record the Power in column #2 in the table below.

4) Repeat until the polarizers are oriented at 90° (crossed) to each other.

Angle	* Power		Theoretical	
[°]	[K]	% Transmission	Transmission [%])	% Difference
0				
10				
20				
30				
40				
50				
60				
70				
80				
90				
			Average % Diff. =	

Data Table:

* - See <u>Basic VSRT Operation</u> for discussion of Power [K]

Calculations:

- Calculate the % Transmission by dividing the Power at a certain angle by the Power at 0°. { Note: The results should be less than 100% }
- 2) Compute the theoretical transmission by taking the cosine of the angle, then squaring it and multiplying by 100 for a percentage;

i.e. – Trans(theo) = $\cos^2 \theta * 100\%$

- 3) Calculate the % Difference = <u>(% Transmission Theoretical Transmission)</u> Theoretical Transmission
- 4) Average the % Difference and place result in the shaded box on lower right.

Graphing:

- 1) Setup the graph for the % Transmission (0% to 100%) vs. Angle (0° to 90°) adjusting the scale of the axes to maximize the size of the graph.
- 2) Graph the measured transmission (2^{nd} column) vs. angle and label it.
- 3) Graph the theoretical transmission $(3^{rd}$ column) vs. angle and label it.

Questions:

- 1) Is the graph of % Transmission vs. Angle linear? Why or Why Not?
- 2) For which angles is there good agreement (<5% difference) between the measured transmission and the theoretical transmissions?
- 3) Where is the % Transmission most sensitive to small changes in angle (few $^{\circ}$)?
- 4) Where is the % Transmission least sensitive to small changes in angle (few°)?
- 5) Explain the answers for questions #3 & #4 based on the shape of the curves.

Additional Activities:

- 1) Vary the polarizer slit widths and spacings to check these effects.
 - Note: The slit/spacing width needs to be ~ $1/10^{\text{th}}$ the wavelength (~2.5mm).
- 2) Try both polarizers in front of either LNBF. Does this also work? Why?

Sample Results:

Malus' Law using 12GHz radio waves

Right Polarizer - Horizontal

I(max) = 160

Angle [°]	Signal	Fit=I(max)*cos²θ
0	162	160
10	159	155
20	126	141
30	109	120
40	86	94
50	60	66
60	55	40
70	31	19
80	18	5
90	7	0

